Introduction

Recent work demonstrates multimodal interpersonal alignment (i.e., “interaction network”) across multiple interaction channels. Previous research supports cross-modal alignment (e.g., infant movement to adult speech; Condon & Sander, 1974).

With our interest in asymmetric interaction, we preliminarily explored how alignment of interacting individuals’ speech and body movement are affected by different conversational contexts, affiliation and argument.

Methods

- N = 6 self-selected dyads.
 - 5 female dyads, 1 mixed-sex dyad.
- Individual participants completed opinion surveys and rated strength of belief.
- Sociopolitical topics (e.g., death penalty, abortion, legalization of gay marriage).
- Dyads recorded while holding 2 conversations (random order).
- Affiliative: prompted to discuss media that both enjoy.
- Argumentative: prompt based on answers to opinion survey.
- Data collection setup (Paxton & Dale, in press):
 - High-definition cameras:
 - Individual lapel microphones with on-camera mixer.
 - Recorded videos using frame-differencing methods (body movement analysis based on pixel changes; Paxton & Dale, in press).
- Derived multiple time series:
 - Raw movement scores and speech states for each speaker.
- Derived multiple time series:
 - Raw movement scores and speech states for each participant.
 - Intrapsychic cross-covariance (multimodal).
- Interpersonal cross-covariance (multimodal).
- Exploratory analyses testing for multimodal interpersonal and intrapersonal alignment included:
 - Correlations of raw time series:
 - Linear mixed-effects models using cross-covariance (fixed effects: lag size and conversation type; random: dyad and conversation order).

Analyses

- Correlations of time series for each conversation type:
 - Intrapersonal multimodal: affiliation, r = .20 (p < .05); argument, r = .21 (p < .05).
 - Interpersonal multimodal: affiliation, r = .03 (n.s.); argument, r = .20 (p < .05).
 - Interpersonal speech: affiliation, r = .08 (n.s.); argument, r = .29 (p < .05).
 - Intrapersonal multimodal: affiliation, r = .03 (n.s.); argument, r = .06 (n.s.).
- Linear mixed-effects models using cross-covariation:
 - Predicting speech state: time slice (est. = .0012); conversation type (est. = .10); interaction (est. = .0014).
 - Predicting body movement: time slice (est. = .001); conversation type (est. = .04); interaction (est. = .002).
- Predicting multimodal interpersonal cross-covariance: time slice (est. = .002); conversation type (est. = .04); interaction (est. = .005).

Results

- Significant p-values: * = p < .05; ** = p < .005; *** = p < .001.
- Correlations of time series for each conversation type:
 - Intrapersonal multimodal: affiliation, r = .20; argument, r = .21.
 - Interpersonal multimodal: affiliation, r = .03; argument, r = .20 (n.s.).
 - Interpersonal speech: affiliation, r = .08; argument, r = .29 (p < .05).
 - Intrapersonal multimodal: affiliation, r = .03; argument, r = .06 (n.s.).
- Linear mixed-effects models using cross-covariation:
 - Predicting speech state: time slice (est. = .0012); conversation type (est. = .10); interaction (est. = .0014).
 - Predicting body movement: time slice (est. = .001); conversation type (est. = .04); interaction (est. = .002).
 - Predicting multimodal interpersonal cross-covariance: time slice (est. = .002); conversation type (est. = .04); interaction (est. = .005).

Discussion

- Multimodal communication is reliably correlated between interlocutors in conversation, suggesting an alignment structure beyond strict in-phase synchrony that is sensitive to conversational context.
- Speech: longer-phase alignment, likely due to turn-taking.
- Conflict enhances intrapersonal multimodal alignment and, overall, diminishes interpersonal alignment.
- Future directions:
 - Increase power by analyzing additional dyads.
 - Expand network to include other channels (e.g., affect, gesture).

References

Thanks to undergraduate research assistants Stephanie Frewen for data preparation and J.P. Gonzales for assisting in data collection.

For questions or correspondence, contact Alexandra Paxton at paxton.alexandra@gmail.com.